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● Survival Analysis: A set of statistical approaches used to 
investigate the time it takes for an event of interest to occur
○ Survival Curve: graphically reports the hazard in a 

population by plotting the fraction of the population that 
survived in the treatment and the control group over time

○ Hazard Ratio: quantitatively reports comparative hazard 
rates between two levels of treatment, estimated through 
Cox Proportional Hazards Model

● Issues with HR in Observational Studies:
○ Lack of causal interpretation from HR
■ Does not address whether the treatment is ”causing” 

the hazard of the outcomes
■ Difference in Randomised studies (e.g. RCTs) and. 

observational studies

● Causally Formulated Hazard Ratio:
○ SCM for “simulating” RCTs from observational data
○ Hypothesis: SCM can aid in generation of causally 

interpretable HR.
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Problem Statement Experiments

Background and Related Works
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Discussion

● Overview of similar previous works:
○ Survival curve through IPW with no adjusted survival 

time, no HR, no SCM [1]
○ Kaplan Meier estimator through IPW without involving 

SCM [2]
○ No predominant existing approach to explain HR for 

causal relationship

● Summary of 
limitations of 
standard HR:

Methods

How can we compute compute the HR for an observational 
study, which clearly conveys causal effect of treatment on 

outcome?

● Our approach: We plan to leverage the SCM with explicitly 
declaring our assumptions and adjusting for the right 
confounders

● Assumptions:
○ the observational data is available
○ no hidden confounders (causal sufficiency)
○ the SCM is fully specified

● A simple observational study:
○ treatment X (dichotomous)
○ outcome in survival time, aka, 

time-to-event T (continuous)
○ a single confounder Z 

(dichotomous)

Transformation of single study to multiple studies
● From survival time, we calculate the i-th day survival,i being 

number of days, generating new Causal DAGs
● For each of the newly generated Causal DAGs (fig (a) or (b) below), 

we adjust for the confounder using the backdoor adjustment 
formula

● We get adjusted probabilities P_adj, adjusted counts C_adj, and 
adjusted survival time T_adj

● P_adj --→ survival curve through Kaplan Meier fitter.
● T_adj --→ Cox PH Model --→ HR (We do not need confounder Z anymore 

since outcome is adjusted accordingly)

● Our proposed approach alters the original SCM into 
multiple SCMs with different endpoints
○ Doing so enables us to calculate conditional 

probabilities and thus backdoor adjustment on SCM
○ Since our method only uses treatment and adjusted 

outcome,  the HR calculated reflects true and direct 
causal relationship of treatment and outcome

● Through the backdoor adjustment, we get rid of biases 
from confounders and look at causal effect of treatment on 
outcome

● Limitation: Knowledge of true Causal DAG
○ Active research has been going on to develop statistical 

and computational algorithms of causal structure 
learning

● In both simulated and ewing dataset, traditional methods 
generate a difference in survival curves and hazard ratios 
calculated 

● Our proposed methodology adjusts properly and 
generates an appropriate and synchronous hazard ratio 
and survival curve

Figure: Unadjusted versus adjusted survival curve for Ewing dataset

Figure: Hazard Ratio calculated in different ways for Ewing dataset

Published in: Machine Learning for Healthcare, 2020

mailto:riddhiman.adib@marquette.edu

